National Repository of Grey Literature 4 records found  Search took 0.02 seconds. 
Epigenetic Dysregulation through Histone Modifications in Lymphoma
Hostaš, Ondřej ; Havránek, Ondřej (advisor) ; Malík, Radek (referee)
Lymphomas are a diverse group of malignant tumors that arise from lymphocytes, commonly affecting lymph nodes or the spleen. They are one of the most common types of tumors worldwide. Unfortunately, many subtypes have a poor prognosis, or are not currently fully curable with standard therapeutic approaches. Mutations in enzymes responsible for posttranslational modifications of histones are very common in certain subtypes of lymphoma, as well as in many other cancer types. These enzymes directly affect gene expression by changing the condensation state, and thus the accessibility, of chromatin. Some of these enzymes have been found to play an important role in the formation of germinal centers in lymphoid follicles. Therefore, their mutations can lead to uncontrolled proliferation and cancer development. Since many conventional therapeutic strategies are incapable of curing a large portion of lymphomas, novel and more targeted approaches are needed. Inhibition and/or modulation of the function of the aforementioned enzymes may be a basis for such approaches. Key words: lymphomas, epigenetic regulation, histone modifications, KMT2D, EZH2, CREBBP, EP300
Regulatory mechanisms of CD47 surface expression
Jakubec, Martin ; Drbal, Karel (advisor) ; Dibus, Michal (referee)
CD47 glycoprotein can be found on the surface of all healthy cells in our body. The interaction of CD47 with inhibitory receptor SIRPα on the macrophage leads to the inhibition of phagocytosis. This makes CD47 irreplaceable for the safe recognition of own cells and removal of aged or apoptotic cells. Apart from this, CD47 plays a major role in several essential signalling pathways, such as cell adhesion and motility or calcium homeostasis. The level of CD47 expression and its presence on the cell membrane depends not only on the type of tissue, but also on the age of a cell. An increased expression of CD47 protein has also been observed in the cells undergoing tumorigenic transformation, allowing them to escape from tumour immunosurveillance. Spontaneous regulation of the CD47 gene expression is achieved via regulatory transcription factors, such as NF-κB or HIF-1. Another mechanism of CD47 regulation includes the 3'UTR of CD47 mRNA, which serves as a binding site for either regulatory proteins, such as HuR, or miRNAs. CD47 expression can thus be regulated on both transcriptional, as well as translational level. However, appropriate topological CD47 localization within the cell and on the cell surface has also an important effect of its physiological function. Our in depth understanding of key regulatory...
Epigenetic factors CTCF a SMARCA5 control expression of hematopoietic transcription factor SPI1 in cells of acute myeloid leukemia and myelodysplastic syndrome.
Dluhošová, Martina ; Stopka, Tomáš (advisor) ; Machová Poláková, Kateřina (referee) ; Kozák, Tomáš (referee)
CCCTC-binding factor (CTCF) can both activate as well as inhibit transcription by forming chromatin loops between regulatory regions and promoters. In this regard, Ctcf binding on the non-methylated DNA and its interaction with the Cohesin complex results in differential regulation of the H19/Igf2 locus. Similarly, a role for CTCF has been established in normal hematopoietic development; however its involvement, despite mutations in CTCF and Cohesin complex were identified in leukemia, remains elusive. CTCF regulates transcription dependently on DNA methylation status and can if bound block interactions of enhancers and promoters. Here, we show that in hematopietic cells CTCF binds to the imprinting control region of H19/Igf2 and found that chromatin remodeller Smarca5, which also associates with the Cohesin complex, facilitates Ctcf binding and regulatory effects. Furthermore, Smarca5 supports CTCF functionally and is needed for enhancer-blocking effect at imprinting control region. We identified new CTCF-recognized locus near hematopoietic regulator SPI1 (PU.1) in normally differentiating myeloid cells together with members of the Cohesin complex. Due to DNA methylation, CTCF binding to the SPI1 gene is reduced in AML blasts and this effect was reversible by DNA methylation inhibitor 5-azacitidine.
Regulatory mechanisms of CD47 surface expression
Jakubec, Martin ; Drbal, Karel (advisor) ; Dibus, Michal (referee)
CD47 glycoprotein can be found on the surface of all healthy cells in our body. The interaction of CD47 with inhibitory receptor SIRPα on the macrophage leads to the inhibition of phagocytosis. This makes CD47 irreplaceable for the safe recognition of own cells and removal of aged or apoptotic cells. Apart from this, CD47 plays a major role in several essential signalling pathways, such as cell adhesion and motility or calcium homeostasis. The level of CD47 expression and its presence on the cell membrane depends not only on the type of tissue, but also on the age of a cell. An increased expression of CD47 protein has also been observed in the cells undergoing tumorigenic transformation, allowing them to escape from tumour immunosurveillance. Spontaneous regulation of the CD47 gene expression is achieved via regulatory transcription factors, such as NF-κB or HIF-1. Another mechanism of CD47 regulation includes the 3'UTR of CD47 mRNA, which serves as a binding site for either regulatory proteins, such as HuR, or miRNAs. CD47 expression can thus be regulated on both transcriptional, as well as translational level. However, appropriate topological CD47 localization within the cell and on the cell surface has also an important effect of its physiological function. Our in depth understanding of key regulatory...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.